Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Article En | MEDLINE | ID: mdl-38237841

Anxiety is among the most prevalent mental disorders present in the general population. Benzodiazepines are the most commonly prescribed drugs for the treatment of anxiety. Using zebrafish as a model organism, we investigated the anxiolytic activity of JM-20, a novel hybrid molecule with a 1,5-benzodiazepine ring fused to a dihydropyridine moiety. Firstly, we carried out some assays to analyze the possible toxicity mediated by JM-20. For this, zebrafish were exposed to different JM-20 concentrations (0-5 µM) for 96 h. Then, using the novel tank test, we evaluated both locomotor and anxiety-like behavior of the animals. Furthermore, brain, liver and plasma were removed to assess toxicity parameters. JM-20 exposure did not cause changes on novel tank, and also did not alter brain viability, hepatic LDH and plasma ALT levels. Afterward, we investigated whether a pre-exposure to JM-20 would prevent the anxiogenic effect evoked by caffeine. In the novel tank test, caffeine significantly decreased the time spent at the top, as well as the number of transitions to the top area. Moreover, caffeine decreased both the total and average time spent in the lit area, as well as increased the number of risk episodes evaluated by the light-dark test. Whole-body cortisol levels were also increased by caffeine exposure. Interestingly, pre-treatment with JM-20 abolished all alterations induced by caffeine. The anxiolytic effect profile of JM-20 was similar to those found for diazepam (positive control). Our findings show, for the first time, the anxiolytic effect of JM-20 in zebrafish, and its relationship with cortisol regulation.


Anti-Anxiety Agents , Humans , Animals , Anti-Anxiety Agents/pharmacology , Caffeine/toxicity , Zebrafish/physiology , Hydrocortisone/pharmacology , Behavior, Animal , Phenotype
2.
Neurochem Res ; 35(11): 1761-70, 2010 Nov.
Article En | MEDLINE | ID: mdl-20694755

This study aimed to compare the effects of repeated restraint stress alone and the combination with clomipramine treatment on parameters of oxidative stress in cerebral cortex, striatum and hippocampus of male rats. Animals were divided into control and repeated restraint stress, and subdivided into treated or not with clomipramine. After 40 days of stress and 27 days of clomipramine treatment with 30 mg/kg, the repeated restraint stress alone reduced levels of Na(+), K(+)-ATPase in all tissues studied. The combination of repeated restraint stress and clomipramine increased the lipid peroxidation, free radicals and CAT activity as well as decreased levels of NP-SH in the tissues studied. However, Na(+), K(+)-ATPase level decreased in striatum and cerebral cortex and the SOD activity increased in hippocampus and striatum. Results indicated that clomipramine may have deleterious effects on the central nervous system especially when associated with repeated restraint stress and chronically administered in non therapeutic levels.


Brain/drug effects , Brain/physiopathology , Clomipramine/pharmacology , Oxidative Stress/drug effects , Stress, Psychological/physiopathology , Animals , Antioxidants/metabolism , Catalase/metabolism , Lipid Peroxidation/drug effects , Male , Rats , Rats, Wistar , Restraint, Physical , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
...